MEMS-BASED INERTIAL ATTITUDE NAVIGATION SYSTEM FOR SOUNDING ROCKETS

Kaiies Daoud, Pontus Johannisson, Lars Landén
2018-11-15
Outline

- Project overview
- Project background
- Hardware overview
- Sensor overview
- Signal processing
- Conclusion
Swedish title: “MEMS-baserade attitydmätsystem för nyttolaster”

Together with the Swedish Space Corporation and RUAG Space within NRFP 3, Acreo will design an attitude navigation system

- Based on an Inertial Measurement Unit (IMU)
 - STIM300: compact, high performance
- The angular velocity integration accumulates error
 - Mitigated using direct attitude observations
 - Using a magnetometer and a sun sensor
- Perform measurements on a sounding rocket

Possible applications include

- Main objective: Attitude navigation of carried instruments
- Future possibilities: Guidance, alignment etc.
Acreo has been developing MEMS gyroscopes and IMUs for ~20 years
 - Earlier under the name IMEGO (1999-)

Acreo is now part of RISE, www.ri.se, Research Institutes of Sweden

Several generations of IMUs for many applications, including
 - Drill hole mapping (GyroSmart)
 - Crash test measurement (IMT40)
 - STIM300 commercialized by Sensonor AS, Horten, Norway
Project Background

- MEMS (microelectromechanical systems) are suitable for IMUs
 - Small, robust, high performance, cheap in mass production
- IMT40 developed by IMEGO ~10 years ago
 - 1 x 3-axis gyroscope
 - 3 x 3-axis accelerometers (different ranges)
 - Fits in the heel of a crash test dummy
- Flew on a Rexus 6 sounding rocket
 - Data was post-processed
 - No magnetometer was available
 - Sun sensor failed in flight
 - Current project is the next step
Hardware Overview

- Rocket Service Module
 - Interface present in rocket

- Attitude navigation system
 - Single Board Computer (SBC)
 - Power Supply Unit (PSU) and electronics

- Sensors
 - Inertial measurement unit
 - Magnetometer
 - Sun sensor

- Hardware has been tested
 - One problem was found and is being fixed
Single Board Computer (SBC)

- Intel quad-core processor, 1.9 GHz
 - 4 GB SDRAM, 32 GB SSD
- Serial Ports
 - RS-422 and RS-232
 - Communication, data acquisition
- Ethernet interface
 - Communication with the Rocket Service Module
 - CCSDS compatible
- Extended temperature range
- Isolated digital inputs and outputs
Sensors: Inertial Measurement Unit (IMU)

- **STIM300 by Sensonor**
 - 3-axis MEMS gyroscope (using 2000 deg/s)
 - Scale factor accuracy: 500 ppm
 - Bias Instability (Allan deviation): 0.7 deg/h
 - Angular Random Walk: 0.20 deg/sqrt(h)
 - 3-axis MEMS accelerometer (using 30 g)
 - Scale factor accuracy: 300 ppm
 - 3-axis inclinometer (low range, low bandwidth)
 - For initial alignment
 - Standard RS-422 interface
 - Weight: 55 g
Sensors: Magnetometer and Sun Sensor

Magnetometer
- Small Magnetometer In Low mass Experiment (SMILE)
 - Provided by Dr. Nickolay Ivchenko (KTH)
 - Miniaturized digital fluxgate magnetometer
 - Mass is 21 g, 20 mm per side
 - Sampling rate of 250 sample/s
 - LVTTTL level (3.3 V high) serial UART interface
 - Internal non-volatile flash memory of 4 Gbit

Sun Sensor
- Placed on the rocket
- Determines the direction to the sun
- Produces pulses when sun light hits the aperture slits
- Second channel rotated 45 deg from first channel
 - Two digital sensor channels

Photograph from M.Sc. thesis by I. A. Arriaga Trejo
System Software

- Multi-threaded C++ platform running on Linux
- Software components
 - Communication with the Rocket Service Module
 - Data acquisition from sensors
 - Buffering of data
 - Possibility for real-time attitude determination
 - First launch will *not* perform real-time navigation
 - Aim is to gather data and develop/evaluate the navigation algorithm in post-processing
 - Everything must of course be real-time compatible
The attitude can be found by integrating the angular velocity.

Project purpose: Obtaining instrument orientation during the entire flight
 - Target accuracy: \(~1\) deg

Motion in the previous project flight:
 - Angular acceleration followed by steady rotation
 - 4 revolutions per second until 240 s
 - In total, 380 000 deg rotation

Attitude navigation error dominated by the scale factor error
 - 1 deg total error would require a scale factor error of \(<3\) ppm
 - Such performance expectation is unrealistic
 - Additional attitude sensors are essential

Error must be bounded using sensor fusion.
Kalman Filtering, Overview

- The system is described by
 - State vector
 - Covariance matrix
 - Uncertainty about the state vector parameters

- Optimal state estimation using
 - State prediction
 - A system model
 - State observation
 - Observation using noisy sensors

- A typical Kalman filter loop
 - State is extrapolated in time...
 - ... and process noise is added
 - Observations are predicted...
 - ... and compared to actual observations
 - State and covariance is updated
Let us try to do that!
- Let the state contain the attitude
- State prediction
 - Gyroscope data
 - Attitude equations
- State observation
 - Magnetometer
 - Sun sensor
 - Two directions (up and direction to the sun) allows complete observation of the state

However, we get a problem...
- Q: What is the process noise?
 - That is, how accurate is the predicted attitude?
- A: We do not know without modeling the gyroscope
- Without knowledge of both the process and observation noise, we cannot do optimal estimation
- We use an error state formulation
Error state formulation

- Let the state contain gyroscope parameters
 - Bias, scale factor correction etc. according to the application
- Predict the attitude
 - Using gyroscope model
- Observe the attitude...
 - ...and update the gyroscope error parameters

The error state formulation allows

1. Correction of the attitude
2. Feedback to the gyroscope model
 - Will improve the performance of the gyroscope by adjusting drifts etc.

Sensors complement each other

- Gyroscope provides high-bandwidth updates
- Additional sensors limit long-term error and correct the gyroscope output
Traditional Kalman filters work for **linear** prediction and observation functions.

In our nonlinear case, the problem is to transform the covariance matrix through the prediction/observation functions.

Traditionally: Linearization (extended Kalman filter, **EKF**)—Requires significant analytical work (differentiation).

Alternatively: Using a set of representative points (sigma-point Kalman filter, **SPKF**)—Easier to implement, similar computational complexity, and similar or better performance as EKF.

The sigma-point approach.

Sigma-Point Kalman Filters

Conclusion

- An attitude navigation system has been designed
 - Based on an IMU (STIM300), a magnetometer, and a sun sensor
- Accuracy target is ~1 deg
 - Using a Kalman filter in an error state formulation
 - IMU enables accurate high-bandwidth navigation on a short time scale
 - Additional sensors limit the error on a long time scale
- System is being finalized
 - One hardware problem is being corrected

Thank you for your attention